مطالعه اندرکنش گودبرداری دائمی و ساختمان مجاور تحت زلزله (مطالعه موردی: رمپ قطار شهری و ساختمان همیاری شهرداری های کرمانشاه)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده فنی مهندسی، دانشگاه رازی، کرمانشاه، ایران

2 دانشگاه رازی، کرمانشاه، ایران

چکیده

گودهای عمیق تأثیر مستقیمی بر تنش‌ها و کرنش‌های خاک اطراف دارند که همین پدیده عامل ایجاد تغییر در پاسخ استاتیکی و دینامیکی سازه‌های مجاور گود می‌شود. در این پژوهش اثر وجود گود عمیق بر پاسخ لرزه‌ای ساختمان بلندمرتبه سازمان همیاری شهرداریهای کرمانشاه موردبررسی قرارگرفته است. در این راستا تلاش شده است تأثیر وجود گود ناشی از رمپ ورودی قطار شهری کرمانشاه بر ساختمان همیاری شهرداری که از سیستم قاب خمشی فولادی بهره می‌برد، مورد بررسی قرار گیرد. در نظرگیری اندرکنش بین خاک و سازه دارای تأثیر فراوانی بر پاسخ سازه ازجمله افزایش دامنه حرکت داخلی فونداسیون و طبقات، کاهش برش پایه و افزایش پریود طبیعی سازه، است. در بررسی سه‌بعدی صورت گرفته برای مصالح خاک و فولاد رفتار غیرخطی و برای مرزهای ویسکوز از المان‌های نیمه بی‌نهایت استفاده‌شده است. استفاده از مرزهای بی‌نهایت عملکرد مطلوبی را در تحلیل لرزه‌ای محیط‌های خاکی نشان داد. قرارگیری ساختمان در مجاورت رمپ ورودی قطار شهری کرمانشاه و در نظر گرفتن اندرکنش خاک-سازه ی مجاور گود باعث افزایش 8.98 درصدی پریود اول ساختمان و کاهش 19.37 درصدی برش پایه وارد بر ساختمان نسبت به حالت تکیه‌گاه صلب و همچنین افزایش جابجایی جانبی طبقات بخصوص در طبقات بالاتر می‌شود که این میزان افزایش در طبقه بام 82.33 درصد نسبت به حالت پایه صلب و 17.63 درصد نسبت به حالت اندرکنش خاک و سازه می‌باشد. همچنین درنظر گرفتن اندرکنش خاک و سازه و گود برای ساختمان نسبت به حالت اندرکنش خاک و سازه بدون لحاظ شدن اثر گود، افزایش 1.09 درصدی پریود اول سازه و کاهش 10.27 درصدی برش پایه و افزایش طیف پاسخ شتاب را در پی خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Permanent excavation interaction and adjacent building under earthquake (Case study: Entrance ramp of the city train and hamyari-shahrdari building)

نویسندگان [English]

  • Jahangir Khazaei 1
  • Afshin Ghobadian 2
1 Assistant Professor, Department of Engineering, Razi University, Kermanshah, Iran
2 razi university, kermanshah, iran
چکیده [English]

Deep excavation have a direct effect on stresses and strains of surrounding soil, and it leads to the change in static and dynamic response of adjacent structures of the excavation. In this study the effects of urban rail ramp permanent excavation on Hamyari response, has been investigated. Consideration of soil-structure-groove interaction has a great effect on the structure response, including increased range of internal motion of foundation and floors, reducing the base shear, and increasing the natural period of the structure. The three-dimensional study has considered a nonlinear behaviour for soil and steel materials and also, semi-infinite elements have been used for viscose boundaries. The use of semi-infinite boundaries has shown a desirable performance in seismic analysis of soil environments. Placement of the building near the entrance ramp of Kermanshah metro and consideration of soil-structure interaction near the excavation, lead to the 8.98% increasing in the first period of the structure, decreasing 19.37% base shear of the Structure against the rest rigid condition, and also increasing the lateral displacement of floors, especially higher floors, and this increment in the roof floor compared to the rigid base and soil-structure interaction are 89.89% and 14.25%, respectively. Also, consideration of soil-structure interaction adjust excavation for building compared to the case with soil-structure interaction and without the excavation effect, leads to the 1.09% increasing in the first period of the structure and 10.27% decreasing in base shear, and also increasing of acceleration response spectrum.

کلیدواژه‌ها [English]

  • Soil-structure interaction
  • deep excavation
  • Dynamic Response
  • base shear
  • period of first mode
  • structure adjust excavation
[1] Stewart, J. P. Seed, R.B. and Fenved , G. L " Empirical Evaluation of Interal Soil – Structure Interaction effects , " PEER – 98107. 1998.
[2] Wirgin A. and P – Y Bard , " Effects of Building on the Duration and Amplitude of Ground Motion in Mexico City ," Bull. Of Seismological Society of Americia. Vol. 86, No 32, PP 914 – 920, 1996.
[3] Building Seismic Safety Council (BSSC), "NEHRP Recommended Provisions for Seismic Regulations for New Buildings, Part 1. Provisions and part 2. Commentary, “Rep. No. FEMA 222A. 1996
[4] "Uniform Building (UBC),” International Conference of Building Officials, 1997
[5] Applied Technology Council (ATC ), "Tentative Provisions for the Development of Seismic Regulations, " Rep. No ATC 3-06, 1978.
[6] Veletsos, Anestis S., and Jethro W. Meek. "Dynamic behaviour of building‐foundation systems." Earthquake Engineering & Structural Dynamics 3.2 (1974): 121-138.
[7] Karapetrou, S. T., S. D. Fotopoulou, and K. D. Pitilakis. "Seismic vulnerability assessment of high-rise non-ductile RC buildings considering soil–structure interaction effects." Soil Dynamics and Earthquake Engineering 73 (2015): 42-57.
[8] Hokmabadi, Aslan S., Behzad Fatahi, and Bijan Samali. "Assessment of soil–pile–structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations." Computers and Geotechnics 55 (2014): 172-186
[9] Li, Mengke, et al. "Influence of soil–structure interaction on seismic collapse resistance of super-tall buildings." Journal of Rock Mechanics and Geotechnical Engineering 6.5 (2014): 477-485.
[10] Torabi, Hooman, and Mohammad T. Rayhani. "Three dimensional Finite Element modeling of seismic soil–structure interaction in soft soil. “Computers and Geotechnics 60 (2014): 9-19.
[11] Sáez, Esteban, Fernando Lopez-Caballero, and Arézou Modaressi-Farahmand-Razavi. "Effect of the inelastic dynamic soil–structure interaction on the seismic vulnerability assessment." Structural Safety 33.1 (2011): 51-63.
[12] Yue, Mao-guang, and Ya-yong Wang. "Soil-Structure Interaction of High-rise Building Resting on Soft Soil." The Electronic Journal of Geotechnical Engineering, ejge (2009)
[13] Li, Peizhen, et al. "Computer simulation on dynamic soil-structure interaction system." 13th World Conference on Earthquake Engineering. No. 3233. 2004
[14] Bielak, Jacobo, and Paul Christiano. "On the effective seismic input for non‐linear soil‐structure interaction systems." Earthquake engineering & structural dynamics 12.1 (1984): 107-119.
[15] Hatzigeorgiou, George D., and Dimitri E. Beskos."Soil–structure interaction effects on seismic inelastic analysis of 3-D tunnels." Soil Dynamics and Earthquake Engineering 30.9 (2010): 851-861.
[16] Akiyoshi, T., et al. "A NON‐LINEAR SEISMIC RESPONSE ANALYSIS METHOD FOR SATURATED SOIL–STRUCTURE SYSTEM WITH ABSORBING BOUNDARY." International journal for numerical and analytical methods in geomechanics 20.5 (1996): 307-329.
[17] Yazdchi, M., N. Khalili, and S. Valliappan. "Dynamic soil–structure interaction analysis via coupled finite-element–boundary-element method." Soil Dynamics and Earthquake Engineering 18.7 (1999): 499-517.
[18] Pitilakis, Dimitris, et al. "Numerical simulation of dynamic soil–structure interaction in shaking table testing." Soil dynamics and earthquake Engineering 28.6 (2008): 453-467.
57 نشریه علمی – پژوهشی مهندسی سازه و ساخت، دوره 6، شماره 3، سال 9318 ، صفحه 75 تا 57
[19] Hall, William S., and Giuseppe Oliveto, eds. Boundary element methods for soil-structure interaction. Springer Science & Business Media, 2003.
[20] Cipolla, J. L., and M. J. Butler. "Infinite elements in the time domain using a prolate spheroidal multipole expansion." International journal for numerical methods in engineering 43.5 (1998): 889-908.
[21] Liu, D. S., and D. Y. Chiou. "2-D infinite element modeling for elastostatic problems with geometric singularity and unbounded domain." Computers & structures 83.25 (2005): 2086-2099.
[22] Kim, Doo‐Kie, and Chung‐Bang Yun. "Time‐domain soil–structure interaction analysis in two‐dimensional medium based on analytical frequency‐dependent infinite elements." International Journal for Numerical Methods in Engineering 47.7 (2000): 1241-1261.
[23] Yun, C. B., et al. "Dynamic infinite elements for soil-structure interaction analysis in a layered soil medium." International Journal of Structural Stability and Dynamics 7.04 (2007): 693-713.
[24] Seo, Choon-Gyo, Chung-Bang Yun, and Jae-Min Kim. "Three-dimensional frequency-dependent infinite elements for soil–structure interaction." Engineering Structures 29.11 (2007): 3106-3120.
[25] Su, Jincheng, and Youqing Wang. "Equivalent dynamic infinite element for soil–structure interaction." Finite Elements in Analysis and Design 63 (2013): 1-7.
[26] ABAQUS Inc, ABAQUS V.6.11 user’s manual. Providence, Rhode Island, USA, 2011 [27] Hokmabadi, A. S., Fatahi, B., & Samali, B. (2014). Assessment of soil–pile–structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations. Computers and Geotechnics, 55, 172-186.