بررسی تاثیر عدم قطعیت پارامترهای مدل ایبار-مدینا-کراوینکلر بر ظرفیت فروریزش لرزه ای قابهای خمشی فولادی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی عمران، دانشگاه فردوسی مشهد، مشهد، ایران

2 استادیار، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

گرچه فروریزش کلی ساختمان ها تحت زلزله کمتر اتفاق می افتد اما رخداد این حادثه در دهه های اخیر و امکان تکرار آن در آینده، تحقیق در این زمینه را اجتناب ناپذیر نموده است. مطالعات عددی و آزمایشگاهی مختلفی در زمینه ی فروریزش لرزه ای سازه ها صورت گرفته است. از رایج ترین مدلهائی که زوال مقاومت و سختی المانهای سازه تحت زلزله را در نظر می گیرد، مدل رفتاری سه خطی ایبارا- مدینا- کراوینکلر می باشد که در مورد سازه های فولادی، پارامترهای آن توسط محققین دیگر با انجام تعداد زیاد تستهای اتصالات آزمایشگاهی ارائه شده است. مدلهای رفتاری حاصل از تستهای آزمایشگاهی معمولا با برازش یک مدل ریاضی همراه است و خطاهای زیادی دارد، به عبارتی وجود عدم قطعیت در مدل های رفتاری آزمایشگاهی از چالش های اساسی کاربرد عملی آنهاست. در این تحقیق یک سازه ی 5 طبقه ی فولادی با سیستم های قاب خمشی متوسط مطابق ضوابط آئین نامه های داخلی طراحی شده است. اثر کاهندگی مقاومت و سختی المانهای سازه بر اساس مدل رفتاری ایبارا-مدینا-کراوینکلر اعمال شده است. تحلیل های دینامیکی افزاینده تحت50 زوج شتابنگاشت پیشنهادی دستورالعمل FEMA P 695 انجام شده است و منحنی های شکنندگی ظرفیتهای فروریزش با در نظر گرفتن عدم قطعیت در لنگر تسلیم و لنگر اوج المانها و ظرفیت دوران نهائی المانها توسعه داده شده است. نتایج نشان می دهد، بین پارامترهای مورد بررسی، عدم قطعیت در پارامتر لنگر اوج بیشترین تاثیر را بر ظرفیت فروریزش سازه می گذارد و می تواند تا 19.2 درصد می تواند احتمال فروریزش را تغییر دهد. عدم قطعیت ظرفیت دوران نهائی نیز در مقایسه با پارامترهای دیگر نقش کمتری در ظرفیت فروریزش سازه داشته است و تا 5.2 درصد احتمال فروریزش را تغییر داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Effect of Uncertainty of the Ibara-Madina-krawinkler Model Parameters on Seismic Collapse Capacity in Steel Moment Resisting Frames

نویسندگان [English]

  • Kourosh Mehdizadeh 1
  • Abbas Karamodin 2
1 PhD Candidate, Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
2 Assistant Professor, Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Although the total collapse of buildings under earthquake occurs less but the incidence in recent decades and the possibility of its re-occurrence in the future has made research inevitable in this field. Several numerical and laboratory studies have been carried out on the seismic collapse of the structures. The most common model considering the strength and stiffness deterioration of the structural elements under earthquake is the Ibarra-Madina-Krawinkler three-linear behavioral model that in the case of steel structures, its parameters is presented via performing a large number of laboratory connection tests by the other researchers. The behavioral models resulted from laboratory tests are usually accompanied by a fitting mathematical model with many errors, i.e., the existence of uncertainty in laboratory behavior models is the fundamental challenge of their practical application. In this research, a 5-story steel structure has been designed with intermediate moment resisting frame in accordance with the internal codes. The effect of strength and stiffness deterioration of structural elements is performed based on the Ibara-Madina-Krawinkler behavioral model. Incremental dynamic analysis was carried out under the proposed 50 pairs of earthquake records proposing FEMA P 695 instruction and the fragility curves of its collapse capacities have been developed considering the uncertainty in the yielding moment and the capping moment of the elements and the ultimate rotation capacity of the elements. The results show that among the studied parameters, the uncertainty in the capping moment parameter has the greatest effect on structural collapse capacity and it can change to 19.2% the collapse probability. Uncertainty of the ultimate rotation capacity compared to the other parameters played a small role in structural collapse capacity and has changed the collapse probability up to 5.2 %.

کلیدواژه‌ها [English]

  • Uncertainty
  • Deteriorating
  • Collapse Capacity
  • Fragility curve
  • Yielding Moment
  • Capping Moment
  • Ultimate Rotation Capacity
[1] Liu, Y., Xu, L. and Grierson, D. E. (2003). Performance of buildings under abnormal loading.InProceedings of the Response of Structures to Extreme Loading Conference, Toronto, Canada.
[2] Kaewkulchai, G. and Willamson, E.B. (2003) . Progressive collapse behaviour of planar frame structures. In Proceedings of the Response of Structures to Extreme Loading Conference, Toronto, Canada.
[3] Kato, B., Akiyama, H., Suzuki, H., and Fukuzawa, Y. (1973). Dynamic collapse tests of steel structural models. 5th World Conf. on Earthquake Engineering, Rome.
[4] Bernal, D. (1987). Amplification factors for inelastic dynamic P-Delta effects in earthquake analysis. Journal of Earthquake Engineering & Structural Dynamics, 15(5), pages 635-651.
[5] Bernal, D. (1992). Instability of buildings subjected to earthquakes.Journal of Structural Engineering, 118(8), pages 2239-2260.
[6] Bernal, D. (1998). Instability of buildings during seismic response. Journal of Engineering Structures, 20, 4-6, pages 496-502.
[7] Rahnama, M. and Krawinkler, H. (1993). Effect of soft soils and hysteresis models on seismic design spectra. John A. Blume Earthquake Engineering Research Centre Report No. 108, Department of Civil Engineering, Stanford University.
[8] Song, J. and Pincheira, J. (2000). Spectral displacement demands of stiffness and strength degrading systems.Earthquake Spectra, 16(4), pages 817-851.
[9] Ibarra, L., Medina, R. and Krawinkler, H. (2002). Collapse assessment of deteriorating SDOF systems.Proceedings of the 12th European Conference on Earthquake Engineering, London, UK, Paper 665, Elsevier Science Ltd.
[10] Vamvatsikos, D. and Cornell, C.A., (2002). Incremental dynamic analysis. Journal of Earthquake Engineering & Structural Dynamics,31(3), 491–514.
[11] Ibarra L. F., Medina R. A. and Krawinkler H., (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering and Structural Dynamics, 34(12), pages. 1489-1511.
[12] Zareian, F. and Krawinkler, H. (2007), Assessment of probability of collapse and design for collapse safety.Earthquake Engineering and Structural Dynamics, 36(13), 1901-1914.
[13] Williamson, E.B. (2003). Evaluation of damage and P-D effects for systems under earthquake excitation. Journal of Structural Engineering, 129(8), pages 1036-1046.
[14] Miranda, E. and Akkar, D. (2003), Dynamic instability of simple structural systems. Journal of Structural Engineering, 129 (12), pages 1722–1726.
[15] Adam, C., Ibarra, L. F. and Krawinkler, H. (2004), “Evaluation of P-delta effects in non-deteriorating MDOF structures from equivalent SDOF systems,” Proc., 13th World Conf. on Earthquake Engineering, Vancouver, B.C., Canada, Paper No. 3407.
[16] Ibarra, L. F. and Krawinkler, H., (2005). Global collapse of frame structures under seismic excitations. Report No. PEER 2005/06, Pacific Earthquake Engineering Research Centre, University of California at Berkeley, Berkeley, California.
[17] Bernal, D., Nasseri, A. and Bulut, Y. (2006). Instability inducing potential of near fault ground motions. SMIP 06 Seminar Proceedings, pages 41-62.
[18] Rodgers, J. and Mahin, S. (2006). Effects of Connection Fractures on Global Behaviour of Steel Moment Frames Subjected to Earthquakes. Journal of Structural Engineering, (ASCE),Vol. 132, No. 1, pages. 78-88.
[19] Kasai, K., Ooki, Y., Motoyui, S., Takeuchi, T. and Sato, E. (2007). E-Defence tests on full-scale steel buildings: Part 1- Experiments using dampers and isolators,” Proc. Structural Congress 2007, ASCE, Long Beach,247-17.
[20] Tada, M., Ohsaki, M., Yamada, S., Motoyui, S. and Kasai, K. (2007). E-Defence tests on full-scale steel buildings: Part 3:Analytical simulation of collapse. Proc. Structures Congress 2007, ASCE, Long Beach, 247-19.
[21] Suita, K., Yamada, S., Tada, M. Kasai, K. Matsuoka, Y. and Sato, E. (2007), “E-Defence tests on full-scale steel buildings: Part 2 − Collapse experiments on moment frames,” Proc. Structures Congress 2007, ASCE, Long Beach,247-18.
[22] Lignos, D.G. and Krawinkler, H.(2009).Side-sway collapse of deteriorating structural systems under seismic excitations. Report no. TB 172. Stanford (CA): John A. Blume Earthquake Engineering Research Centre. Department of Civil and Environmental Engineering, Stanford University, 1-12.
[23] Lignos, D.G. and Krawinkler, H. (2011). Deterioration modelling of steel components in support of collapse prediction of steel moment frames under earthquake loading, Journal of Structural Engineering, 137 (11), 1291-1302.
[24] Lignos, D.G.and Krawinkler, H. (2010). A steel database for component deterioration of tubular hollow square steel columns under varying axial load for collapse assessment of steel structures under earthquakes. In Proceedings of the 7th International Conference on Urban Earthquake Engineering (7CUEE), Tokyo, Japan.
[25] Domizio, M., Ambrosini, D., Curadelli, O. (2015). Experimental and numerical analysis to collapse of a framed structure subjected to seismic loading. . Journal of Engineering Structures, Volume 82, 22-32.
[26] Elkady, A. and Lignos, D.G. (2015). Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames, Journal of Earthquake Engineering & Structural Dynamics, Volume 44, Issue 8, 1289–1307.
[27] Eads, L., Miranda L. E, Lignos, D.G. (2015).Average spectral acceleration as an intensity measure for collapse risk assessment, Journal of Earthquake Engineering & Structural Dynamics, Volume 44, Issue 12, 2057–2073.
[28]Bai, Y., Shi, Y., Deng, K. (2016). Collapse analysis of high-rise steel moment frames incorporating deterioration effects of column axial force – bending moment interaction. Journal of Engineering Structures, Volume 127, 402-415.
[29] Elkady, A. and Lignos, D.G. (2017). Stability Requirements of Deep Steel Wide-Flange Columns under Cyclic Loading.
In. Proceedings of the Annual Stability Conference Structural Stability Research Council (SSRC). Annual Stability Conference Structural Stability Research Council, San Antonio, Texas, USA, March 22-24.
[30] Suzuki, Y., Lignos, D.G. (2017). Collapse Behaviour of Steel Columns as Part of Steel Frame Buildings: Experiments and Numerical Models.In Proceedings of the 16th World Conference on Earthquake Engineering (16WCEE), 1032.
[31] FEMA P695. (2009). Quantification of Building Seismic Performance Factors. Washington, D.C. Federal Emergency Management Agency, USA.
[32] INBC. (2013). Design and Construction of Steel Structures. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 10. (In Persian).
[33] INBC.(2013). Design Loads for Buildings. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 6. (In Persian).
[34] BHRC. (2014). Iranian code of practice for seismic resistant design of buildings. Tehran: Building and Housing Research Centre,Standard No. 2800. (In Persian).
[35] Lignos, D.G. and Krawinkler, H. (2007). A database in support of modelling of component deterioration for collapse prediction of steel frame structures. In Proceeding of the ASCE Structures Congress, Long Beach CA, SEI institute.
[36] Mazzoni, S., Mckenna, F., Scott, M. H. and Fenves, G. L. (2006).OpenSEES Command Language Manual.http://OpenSEES. Berkeley.edu/OPENSEES/manuals/user manual/OpenSEES Command Language Manual June 2006.pdf.
[37] Gupta, A. and Krawinkler, H. (1999). Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures. Technical Report 132, The John A. Blume Earthquake Engineering Research Centre, Department of Civil Engineering, Stanford University, Stanford, CA. http://server2.docfoc.com/uploads/Z2015/12/26/JWVv1cW5w9/b9e07b8eadbb3936bc52f79b7df20534.pdf
[38] Lignos, D.G. and Krawinkler, H. (2012). Development and Utilization of Structural Component Databases for Performance-Based Earthquake Engineering. Journal of Structural Engineering, 139 (8),1382-1394.
[39] Shanmugam, N. E., Ting, L. C. (1995). Welded interior box-column to I-beam connections. Journal of structural engineering, 824-830.