تعیین ضرایب فشار باد بر سوله های با سقف قوسی با استفاده از آزمایش تونل باد و مدل-سازی عددی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه غیرانتفاعی شاهرود ، شاهرود، ایران

2 استادیار، گروه مهندسی عمران، واحد دامغان، دانشگاه آزاد اسلامی ، دامغان، ایران

چکیده

سازه‌هایی با سقف‌های دهانه بزرگ در برابر باد آسیب‌پذیر هستند، در این سازه‌ها به دلیل بار مرده کم، بار باد اثر بیشتری بر روی این نوع سازه‌ها می‌گذارد. در محاسبه نیروی باد یکی از ضرایب که به هندسه سازه ارتباط دارد ضریب فشار Cp)) می‌باشد که این ضریب برای برخی از سازه‌های متداول در آیین‌نامه‌های بارگذاری ارائه‌شده است، در این تحقیق بررسی جریان باد بر سطح سازه سوله قوسی شکل با سه نسبت ارتفاع به دهانه قوس 1/0و2/0و3/0 با استفاده از آزمایش تونل باد و همچنین مدل‌سازی عددی بر مبنای روش دینامیک سیالات محاسباتی (CFD) با استفاده از نرم‌افزار ANSYS صورت گرفته و ضرایب فشار باد بر روی این سازه‌ها ارائه‌شده است، مشاهده می‌شود با افزایش نسبت ارتفاع به دهانه قوس بیشینه ضرایب فشار باد منفی(مکش)، افزایش‌یافته به‌نحوی‌که بر روی محور میانی سازه در حالت 900=α ، بیشینه فشار منفی در سازه 1-S، 2-S، 3-S، به ترتیب برابر 2- و 7/1- و 6/1- است. ضرایب فشار در اضلاع رو به باد عدد مثبت را نشان می دهد که نشان دهنده فشار در این سطوح است، حداکثر فشار مثبت در900=α ) حالتی که جهت اعمال باد بر سوله عمود است) رخ می دهد که در این حالت ضریب فشار برابر 1+ است. درسازه1- S (نسبت ارتفاع به دهانه 3/0) ، بیشینه تغییر شکل ایجاد شده به ازای زاویه اعمال باد 400=α است که این میزان 20 درصد بیشتر از حالت 900 α= است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining wind pressure coefficients on sheds with arched roofs using wind tunnel tests and numerical modeling

نویسندگان [English]

  • Amir Kazem Najafi 1
  • hossein sadeghi 2
1 Master's student, Faculty of Civil Engineering, Non-Profit University, Shahroud, Iran
2 Assistant Professor, Department of Civil Engineering , Damghan Branch, Islamic azad university,Damghan, Iran
چکیده [English]

Structures with large opening roofs are vulnerable to wind, in these structures due to the low dead load, the wind load has a greater effect on these types of structures. In the calculation of wind force, one of the coefficients related to the geometry of the structure is the pressure coefficient (Cp), which is provided for some common structures in the loading regulations. Arch opening of 0.1, 0.2 and 0.3 was done using wind tunnel test and numerical modeling based on Computational Fluid Dynamics (CFD) method using ANSYS software and wind pressure coefficients on these structures are presented, it can be seen that with increasing The ratio of the height to the opening of the arch of the maximum coefficients of negative wind pressure (suction), increased in such a way that on the middle axis of the structure in the state of α = 90o, the maximum negative pressure in the structure S-1, S-2, 3-S, is equal to -2 and It is -1.7 and -1.6. The pressure coefficients on the sides facing the wind show a positive number, which indicates the pressure on these surfaces, the maximum positive pressure occurs at α=90o (the state where the direction of the wind is perpendicular to the shed) and in this case the pressure coefficient is equal to +1. In structure S-1 (height-to-opening ratio 0.3), the maximum deformation created for the wind application angle is α=40o, which is 20% more than α=90 o.

کلیدواژه‌ها [English]

  • wind tunnel
  • wind pressure coefficients
  • arc shed
  • computational fluid dynamics
  • ANSYS
[1] Lu, C. L., Li, Q. S., Huang, S. H., Chen, F. B., & Fu, X. Y. (2012). Large eddy simulation of wind effects on a long-span complex roof structure. Journal of Wind Engineering and Industrial Aerodynamics, 100(1), 1-18.
[2] Fu, J. Y., Liang, S. G., & Li, Q. S. (2007). Prediction of wind-induced pressures on a large gymnasium roof using artificial neural networks. Computers & structures, 85(3-4), 179-192.
[3] Ding, Z., & Tamura, Y. (2013). Contributions of wind-induced overall and local behaviors for internal forces in cladding support components of large-span roof structure. Journal of Wind Engineering and Industrial Aerodynamics, 115, 162-172.
[4] Yasui, H., Marukawa, H., Katagiri, J., Katsumura, A, Tamura, Y., & Watanabe, K. (1999). Study of wind-induced response of long-span structure. Journal of Wind Engineering and Industrial Aerodynamics, 83(1-3), 277
[5] Li, D., Liu, B., & Cheng, Y. (2020). Wind pressure coefficients zoning method based on an unsupervised learning algorithm. Mathematical Problems in Engineering, 2020.
[6] American Society of Civil Engineers. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI)
[7] Architectural Institute of Japan, Recommendations for Loads on Buildings: AIJ-  2004, Architectural Institute of Japan, Tokyo, Japan, 2004.
[8] National Research Council of Canada, User’s Guide: NBC 2005 Structural Commentaries: Part 4 of Division B: NBC- 2005, National Research Council of Canada, Ottawa, Canada, 2005.
[9] Sadeghi, H., Heristchian, M., Aziminejad, A., & Nooshin, H. (2017). Wind effect on grooved and scallop domes. Engineering Structures, 148, 436-450.
[10] Park, M. J., Yoon, S. W., Kim, Y. C., & Cheon, D. J. (2022). Wind Pressure Characteristics Based on the Rise–Span Ratio of Spherical Domes with Openings on the Roof. Buildings, 12(5), 576.
[11] Lee, J. H., Kim, Y. C., Cheon, D. J., & Yoon, S. W. (2022). Wind pressure characteristics of elliptical retractable dome roofs. Journal of Asian Architecture and Building Engineering, 21(4), 1561-1577.
[12] Verma, A., Meena, R. K., Raj, R., & Ahuja, A. K. (2022). Experimental investigation of wind induced pressure on various type of low-rise structure. Asian Journal of Civil Engineering, 23(8), 1251-1265.
 [13] Khosrowjerdi, S., & Sarkardeh, H. (2022). Effect of wind load on combined arches in dome buildings. The European Physical Journal Plus, 137(2), 227.
[14] Sun, X., Arjun, K., & Wu, Y. (2020). Investigation on wind tunnel experiment of oval-shaped arch-supported membrane structures. Journal of Wind Engineering and Industrial Aerodynamics, 206, 104371.
[15] davarzani, hamidreza, ahmad ganjali, hossein sadeghi, and rasul mohebbi. 2022. Determination of wind pressure coefficients on cylindrical storage tanks, using wind tunnel testing and numerical modeling. Journal of Structural and Construction Engineering. 9(9), 87-102
[16] Su, N., Peng, S., & Uematsu, Y. (2021). Reynolds number effects on the wind pressure distribution on spherical storage tanks. Journal of Wind Engineering and Industrial Aerodynamics, 208, 104464.
[17] Bani Vahid, Sadeghi Hossein, and Tousi Alireza. (2022). Determination of wind pressure coefficients on cylindrical roofs (Barrel roofs). Journal of Structural and Construction Engineering. 9 (8), 180-197
[18] Nejati, A., Sadeghi, H., & Heristchian, M. (2023). Wind effect on scallop domes with negative amplitude and prominence using Experimental and Numerical Study. International Journal of Space Structures
[19] Sheikh Aleslami, A. A., & Sadeghi, H. (2023). Effect of Wind Load on Milad Tower and Adjacent Buildings Case study: Shed Adjacent to Tower. Iranian (Iranica) Journal of Energy & Environment, 14(3), 289- 300.
[20] Rajabi, E., Sadeghi, H., & Hashemi, M. R. (2022). Wind effect on building with Y-shaped plan. Asian Journal of Civil Engineering, 23(1), 141-151.
[21] Davarzani, H. R., Ganjali, A., Sadeghi, H., & Mohebbi, R. (2023). Numerical and Experimental Study of Wind Effect on the Storage Tanks Based the Tank Adjacency. Experimental Techniques, 1-14.