مطالعه رفتار لرزه‌ای و توسعه منحنی های شکنندگی قاب‌های مهاربندی‌شده واگرا تحت اثر زلزله‌های متوالی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 کارشناس ارشد سازه، دانشکده مهندسی عمران، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران.

2 پژوهشگر پسادکتری سازه، دانشکده مهندسی عمران، دانشگاه صنعتی شریف، تهران، ایران

3 مربی، دانشکده مهندسی عمران، دانشگاه گرمسار

چکیده

پتانسیل آسیب‌پذیری در مواجهه با پس‌لرزه‌ها، حتی در خصوص بسیاری از سازه‌هایی که مطابق با آیین نامه‌های لرزه‌ای معتبر طراحی شده‌اند، لزوم مطالعه در خصوص سیستم‌های سازه‌ای مختلف را آشکار می‌سازد. تجارب زلزله‌های پیشین و نتایج مطالعات صورت گرفته روی قاب‌های مهاربندی شده واگرا، حاکی از شکل‌پذیری و سختی مناسب این سیستم باربر لرزه‌ای در تقابل با زمین‌لرزه‌های قوی می‌باشد. در مقاله حاضر رفتار لرزه‌ای قاب‌های مهاربندی شده واگرا تحت زلزله اصلی و پس‌لرزه مورد مطالعه قرار گرفته است. بدین منظور، ساختمان‌های 4، 8 و 12 طبقه تحت تحلیل بارافزون، تاریخچه زمانی غیرخطی و دینامیکی افزایشی با استفاده از پس‌لرزه‌های انتخاب شده، قرار گرفته‌اند. به علاوه، منحنی‌های شکنندگی برای سطوح مختلف خرابی قبل و بعد از وقوع زلزله اصلی نیز ارائه گردیده است. نتایج بیانگر مقاومت بالا و ظرفیت باربری مناسب قاب‌های مهاربندی شده واگرا تحت زلزله‌های چندگانه می‌باشد که قادر به دست‌یابی به سطوح بالای‌ عملکردی می‌باشند.
پتانسیل آسیب‌پذیری در مواجهه با پس‌لرزه‌ها، حتی در خصوص بسیاری از سازه‌هایی که مطابق با آیین نامه‌های لرزه‌ای معتبر طراحی شده‌اند، لزوم مطالعه در خصوص سیستم‌های سازه‌ای مختلف را آشکار می‌سازد. تجارب زلزله‌های پیشین و نتایج مطالعات صورت گرفته روی قاب‌های مهاربندی شده واگرا، حاکی از شکل‌پذیری و سختی مناسب این سیستم باربر لرزه‌ای در تقابل با زمین‌لرزه‌های قوی می‌باشد. در مقاله حاضر رفتار لرزه‌ای قاب‌های مهاربندی شده واگرا تحت زلزله اصلی و پس‌لرزه مورد مطالعه قرار گرفته است. بدین منظور، ساختمان‌های 4، 8 و 12 طبقه تحت تحلیل بارافزون، تاریخچه زمانی غیرخطی و دینامیکی افزایشی با استفاده از پس‌لرزه‌های انتخاب شده، قرار گرفته‌اند. به علاوه، منحنی‌های شکنندگی برای سطوح مختلف خرابی قبل و بعد از وقوع زلزله اصلی نیز ارائه گردیده است. نتایج بیانگر مقاومت بالا و ظرفیت باربری مناسب قاب‌های مهاربندی شده واگرا تحت زلزله‌های چندگانه می‌باشد که قادر به دست‌یابی به سطوح بالای‌ عملکردی می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of seismic behavior and development of fragility curves of divergent braced frames under successive earthquakes

نویسندگان [English]

  • mohammadhosein moradiyan 1
  • Ghasem pachideh 2
  • Amin moshtagh 3
1 Master of Structures, Faculty of Civil Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran.
2 Postdoctoral Research Assistant, Sharif University of Technology
3 Msc, civil faculty, garmsar university
چکیده [English]

The potential for aftershocks vulnerability, even for many structures designed following valid seismic regulations, highlights the need to study various structural systems. Experiences of previous earthquakes and the results of studies on divergent braced frames indicate the proper ductility and stiffness of this seismic load-bearing system in the face of strong earthquakes. In the present paper, the seismic behavior of divergent braced frames under the main earthquake and aftershock has been studied. For this purpose, 4, 8, and 12 story buildings were subjected to increasing analysis, nonlinear time history, and incremental dynamics using selected aftershocks. Also, fragility curves for different levels of failure before and after the main earthquake were presented. The results show high strength and suitable bearing capacity of divergent braced frames under multiple earthquakes that can achieve high-performance levels.
The potential for aftershocks vulnerability, even for many structures designed following valid seismic regulations, highlights the need to study various structural systems. Experiences of previous earthquakes and the results of studies on divergent braced frames indicate the proper ductility and stiffness of this seismic load-bearing system in the face of strong earthquakes. In the present paper, the seismic behavior of divergent braced frames under the main earthquake and aftershock has been studied. For this purpose, 4, 8, and 12 story buildings were subjected to increasing analysis, nonlinear time history, and incremental dynamics using selected aftershocks. Also, fragility curves for different levels of failure before and after the main earthquake were presented. The results show high strength and suitable bearing capacity of divergent braced frames under multiple earthquakes that can achieve high-performance levels.

کلیدواژه‌ها [English]

  • Divergent braced frame
  • grafted beam
  • aftershock
  • main earthquake
  • sequential earthquake
  • incremental dynamic analysis
  • fragility curve
[1] Hauksson, E. and Jones, L.M. (1995). The 1994 Northridge earthquake sequence in California: Seismological and tectonic aspects. Journal of Geophysical Research, 100(7), 12335–12355.
[2] USGS (2000). Implications for earthquake risk reduction in the United States from the Kocaeli, Turkey, Earthquake of August 17, 1999, U.S. Geological Survey Circular 1193.
[3] Pachideh, G., Gholhaki, M., and Kafi, M.A. (2020). Experimental and Numerical Evaluation of an Innovative Diamond-Scheme Bracing System Equipped with a Yielding Damper. Steel and Composite Structures, 36(2), 197-211.
[4] Pachideh, G., Kafi, M.A., and Gholhaki, M. (2020). Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater. Structures, 28, 467-481.
[5] Gholhaki, M., Pachideh, G., Rezayfar, O., and ghazvini, S. (2019). Specification of Response modification factor for Steel Plate Shear Wall by Incremental Dynamic Analysis Method [IDA]. Journal of Structural and Construction Engineering, 6(2), 211-224.
[6] Decanini L.D., Liberatore, D., Liberatore, L., and Sorrentino, L. (2012). Preliminary report on the 2012, May 20, Emilia earthquake, 1, http://www.eqclearinghouse.org/2012-05-20-italy-it/.
[7] Ruiz-García, J., and Negrete-Manriquez, J. C. (2011). Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock-aftershock seismic sequences. Engineering Structures, 33(2), 621-634.
[8] Pan, H., and Kusunoki, K. (2020). Aftershock damage prediction of reinforced-concrete buildings using capacity spectrum assessments. Soil Dynamics and Earthquake Engineering, 129, 105952.
[9] Gaetani d'Aragona, M., Polese, M., Elwood, K. J., Baradaran Shoraka, M., and Prota, A. (2017). Aftershock collapse fragility curves for non‐ductile RC buildings: a scenario‐based assessment. Earthquake Engineering & Structural Dynamics, 46(13), 2083-2102.
[10] Han, R., Li, Y., and van de Lindt, J. (2015). Loss estimation of reinforced concrete buildings considering aftershock hazards. In Structures Congress, 2174-2185.
[11] Lemnitzer, A., Massone, L. M., Skolnik, D. A., Juan, C., & Wallace, J. W. (2014). Aftershock response of RC buildings in Santiago, Chile, succeeding the magnitude 8.8 Maule earthquake. Engineering structures, 76, 324-338.
[12] Jeon, J. S., DesRoches, R., Brilakis, I., and Lowes, L. N. (2012). Aftershock fragility curves for damaged non-ductile reinforced concrete buildings. In 15th World Conference on Earthquake Engineering.
[13] Mahin, S.A. (1980). Effects of duration and aftershocks on inelastic design earthquakes. Proceedings of the seventh world conference on earthquake engineering, Istanbul, Turkey.
[14] Aschheim, M., and Black, E. (1999). Effects of prior earthquake damage on response of simple stiffness-degrading structures. Earthquake Spectra, 15(1), 1-24.
[15] Amadio, C., Fragiacomo, M., and Rajgelj, S. (2003). The effects of repeated earthquake ground motions on the non-linear response of SDOF systems. Earthquake Engineering & Structural Dynamics, 32(2), 291-308.
[16] Sunasaka, Y. and Kiremidjian, A. (1993). A method for structural safety evaluation under mainshock-aftershock earthquake sequences. Report No. 105. The John A. Blume Earthquake Engineering Center, Stanford University. Stanford, CA.
[17] Nazari, N., van de Lindt, J. and Li, Y. (2013). Effect of Mainshock-Aftershock Sequences on Woodframe Building Damage Fragilities, Journal of Performance of Constructed Facilities. doi: 10.1061/(ASCE)CF.1943-5509.0000512.
[18] Hatzigeorgiou, G.D., and Liolios, A.A. (2010). Nonlinear behaviour of RC frames under repeated strong ground motions. Soil Dynamics & Earthquake Engineering, 30(10), 1010-1025.
[19] Yin, Y.J., and Li, Y. (2010). Seismic Collapse Risk of Light-Frame Wood Construction Considering Aleatoric and Epistemic Uncertainties, Structural Safety, 32(4), 250-261.
[20] Yin, Y.J., and Li, Y. (2011). Loss Estimation of Light-Frame Wood Construction Subjected to Main shock-Aftershock Sequences. Journal of Performance ofConstructed Facilities, 25(6), 504-513.
[21] Jeon, J.S., DesRoches, R., Brilakis, I., and Lowes, L.N. (2012). Aftershock Fragility Curves for Damaged Non-Ductile Reinforced Concrete Buildings. 15th WorldConference on Earthquake Engineering, Lisbon, Portugal.
[22] Song, R., Li, Y., and Van De Lindt, J., (2014). Impact of Earthquake Ground Motion Characteristics on Collapse Risk of Post-Mainshock Buildings Considering Aftershocks. Engineering Structures, 81, 349–361.
[23] Li, Y., Song, R., and Van De Lindt, J., (2014). Collapse Fragility of Steel Structures Subjected to Earthquake Mainshock Aftershock Sequences. Journal of Structural Engineering, 140(12), 04014095.
[24] Zhang, Y., V. Burton, H., Shokrabadi, M., and W. Wallace, J. (2019). Seismic Risk Assessment of a 42-Story Reinforced Concrete Dual-System Building Considering Mainshock and Aftershock Hazard. Journal of Structural Engineering, 145(11), 04019135, doi:10.1061/(ASCE)ST.1943-541X.0002427.
[25] Ruiz-García, J., Bojorquez, E., and Corona, E. (2018). Seismic behavior of steel eccentrically braced frames under soft-soil seismic sequences. Soil Dynamics and Earthquake Engineering, 115, 119-128, https://doi.org/10.1016/j.soildyn.2018.08.018.
[26] Abdollahzadeh, G., Mohammadgholipour A., and Omranian E., (2017). Seismic Evaluation of Steel Moment Frames Under Mainshock–Aftershock Sequence Designed by Elastic Design and PBPD Methods. Journal of Earthquake Engineering, DOI: 10.1080/13632469.2017.1387198.
[27] Di Sarno, L., and Amiri, S., (2019). Period elongation of deteriorating structures under mainshock-aftershock sequences. Engineering Structures, 196, 109341, https://doi.org/10.1016/j.engstruct.2019.109341.
[28] Han, R., Li, Y., and van de Lindt, J., (2015). Assessment of Seismic Performance of Buildings with Incorporation of Aftershocks. Journal of Performance of Constructed Facilities, 04014088, 29(3), doi:10.1061/(ASCE)CF.1943-5509.0000596.
[29] Hatzigeorgiou, G.D., and Liolios, A.A., (2010). Nonlinear Behaviour of RC Frames Under Repeated Strong Ground Motions. Soil Dynamics Earthquake Engineering, 30, 1010–1025.
[30] Hatzigeorgiou, G.D., and Beskos, D.E., (2009).  Inelastic Displacement Ratios for SDOF Structures Subjected to Repeated Earthquakes. Engineering Structures, 31, 2744–2755.
[31] Hatzigeorgiou, G.D., (2010). Ductility Demand Spectra for Multiple Near-and Far-Fault Earthquakes. Soil Dynamics Earthquake Engineering, 30, 170-183.
[32] Permanent Committee for Revising the Standard 2800, (2014). Iranian Code of Practice for Seismic Resistant Design of Buildings, 4th Edition, Building and Housing Research Center, Tehran, Iran.
[33] Institute of National Building Regulations, (2008). Design and construction of Steel Structures, Topic.10, Ministry of Roads & Urban Development, Iran.
[34] Computers and Structures Inc. (CSI) (2016). SAP2000 ver 18.2.0: Integrated Finite Element Analysis and Design of Structures. Analysis Reference, University of California, Berkeley.
[35] FEMA 356 (2000). Prestandard and commentary for the seismic rehabilitation of buildings, Prepared by the American Society of Civil Engineers for the Federal Emergency Management Agency, Washington D.C.
[36] Vamvatsikos, D. and Cornell, C.A. (2002). Incremental dynamic analysis. Earthquake Eng. Struct. Dyn, 31, 491-514. doi:10.1002/eqe.141
[37] NEHRP Recommended Provisions for Seismic Regulations for New and Other Structures, FEMA 450-1, (2003). Edition; Part 1: Provisions.
[38] PEER Ground Motion Database, Pacific Earthquake Engineering Research Centre, Web Site: http:// peer.berkeley.edu/peer-ground-motion-database
[39] Shome, N., and Cornell, C.A. (1999). Probabilistic Seismic Demand Analysis of Nonlinear Structures. Reliability of Marine Structures, Report No: RMS-35, Civil and Environmental Engineering, Stanford University.
[40] Zareian, F., Krawinkler, H., Ibarra, L. and Lignos, D. (2010). Basic Concepts and Performance Measures in Prediction of Collapse of Buildings Under Earthquake Ground Motions. The Structural Design of Tall and Special Buildings, 19, 167-181, DIO: 10.1002/tal.546.
[41] Mahmoudi Mandani, A., and Faghihmaleki, H. (2015). A Comparison of Damage Indices in Development of Seismic Fragility Curve for Steel Moment Frames with Divergent Bracing. Buletin Teknologi Makanan, 2(5), 283-289.